Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract. Radio-echo sounding (RES) has revealed an internal architecture within Antarctica’s ice sheets that records their depositional, deformational and melting histories. Crucially, spatially-widespread RES-imaged internal-reflecting horizons, tied to ice-core age-depth profiles, can be treated as isochrones that record the age-depth structure across the Antarctic ice sheets. These enable the reconstruction of past climate and ice-dynamical processes on large scales, which are complementary to but more spatially-extensive than commonly used proxy records across Antarctica. We review progress towards building a pan-Antarctic age-depth model from these data by first introducing the relevant RES datasets that have been acquired across Antarctica over the last six decades (focussing specifically on those that detected internal-reflecting horizons), and outlining the processing steps typically undertaken to visualise, trace and date (by intersection with ice cores, or modelling) the RES-imaged isochrones. We summarise the scientific applications to which Antarctica’s internal architecture has been applied to date and present a pathway to expanding Antarctic radiostratigraphy across the continent to provide a benchmark for a wider range of investigations: (1) Identification of optimal sites for retrieving new ice-core palaeoclimate records targeting different periods; (2) Reconstruction of surface mass balance on millennial or historical timescales; (3) Estimates of basal melting and geothermal heat flux from radiostratigraphy and comprehensively mapping basal-ice units, to complement inferences from other geophysical and geological methods; (4) Advancing knowledge of volcanic activity and fallout across Antarctica; (5) The refinement of numerical models that leverage radiostratigraphy to tune time-varying accumulation, basal melting and ice flow, firstly to reconstruct past behaviour, and then to reduce uncertainties in projecting future ice-sheet behaviour.more » « less
- 
            We present here Bedmap3, the latest suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of Antarctica south of 60degS. Bedmap3 incorporates and adds to all post-1950s datasets previously used for Bedmap1 and Bedmap2, including 84 new aero-geophysical surveys by 15 data providers, an additional 52 million data points and 1.9 million line-kilometres of measurement. This has filled notable gaps in East Antarctica, including the South Pole and Pensacola basin, Dronning Maud Land, Recovery Glacier and Dome Fuji, Princess Elizabeth Land, plus the Antarctic Peninsula, West Antarctic coastlines, and the Transantarctic Mountains. Our new Bedmap3/RINGS grounding line similarly consolidates multiple recent mappings into a single, spatially coherent feature. Combined with updated maps of surface topography, ice shelf thickness, rock outcrops and bathymetry, Bedmap3 reveals in much greater detail the subglacial landscape and distribution of Antarctica's ice, providing new opportunities to interpret continental-scale landscape evolution and to model in detail the past and future evolution of the Antarctic ice sheets. Sponsored by the Scientific Committee on Antarctic Research (SCAR), the Bedmap3 Action group aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international scientific community. The associated Bedmap datasets are listed here: https://www.bas.ac.uk/project/bedmap/#datamore » « less
- 
            Abstract. One of the key components of this research has been the mapping of Antarctic bed topography and ice thickness parameters that are crucial for modelling ice flow and hence for predicting future ice loss andthe ensuing sea level rise. Supported by the Scientific Committee on Antarctic Research (SCAR), the Bedmap3 Action Group aims not only to produce newgridded maps of ice thickness and bed topography for the internationalscientific community, but also to standardize and make available all thegeophysical survey data points used in producing the Bedmap griddedproducts. Here, we document the survey data used in the latest iteration,Bedmap3, incorporating and adding to all of the datasets previously used forBedmap1 and Bedmap2, including ice bed, surface and thickness point data from all Antarctic geophysical campaigns since the 1950s. More specifically,we describe the processes used to standardize and make these and futuresurveys and gridded datasets accessible under the Findable, Accessible, Interoperable, and Reusable (FAIR) data principles. With the goals of making the gridding process reproducible and allowing scientists to re-use the data freely for their own analysis, we introduce the new SCAR Bedmap Data Portal(https://bedmap.scar.org, last access: 1 March 2023) created to provideunprecedented open access to these important datasets through a web-map interface. We believe that this data release will be a valuable asset to Antarctic research and will greatly extend the life cycle of the data heldwithin it. Data are available from the UK Polar Data Centre: https://data.bas.ac.uk (last access: 5 May 2023). See the Data availability section for the complete list of datasets.more » « less
- 
            Abstract Visible and infrared satellite images reveal numerous lineations on the Siple Coast region of West Antarctica. We used 5 MHz ice-penetrating radar to probe the interior and the bed of the ice sheet beneath a lineation at the boundary between Engelhardt Ice Ridge and flat-ice terrain to the south of the Kamb Ice Stream (KIS) outlet. Results show curved reflectors that emerge from the bed beneath 600 m thick ice. The tops of the reflectors extend about 100m into the ice above the bed, where they become almost horizontal. Apparent reflectivity of the horizontal section is about 20 dB less than that of the bed. We conclude that the likely cause of such strong reflection is sea water that was accreted into basal crevasses when the flat-ice terrain was floating. Internal layers are warped downward just downslope from the basal reflectors. It is thought that the downwarping was caused by localized basal melting in the past. The spatial pattern of downwarping suggests that localized basal melting was stronger on the north side than on the south side of KIS; apparently ice/ocean interactions on the two sides of KIS were different.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
